The Optical Remote Sensing group Department of Earth and Space Sciences Chalmers University of Technology, Gothenburg

Development and application of optical remote sensing methods for atmospheric research

Methodologies UV -VIS - IR DOAS, FTIR Artificial and natural light sources (Sun, sky, hot lava)

Applications: Urban air pollution Industrial emissions Stratospheric ozone Climate gas emissions Ship emissions Volcanic gas

Experience related to volcanology

Coordinator of 2 EU-projects:

DORSIVA (Development of Optical Remote Sensing Instruments for Volcanological Applications, 2002 - 2005) mini-DOAS, scanning DOAS, Solar FTIR

NOVAC (Network for Observation of Volcanic and Atmospheric Change, 2005 - 2010) implementation of 64 Scanning mini-DOAS instruments on 24 volcanoes worldwide

Cross crater FTIR and DOAS measurements with artificial light Mobile and stationary Solar FTIR Passive FTIR (using hot lava) Passive diffusive samplers

Chalmers tasks in FUTUREVOLC

- Develop a version of the NOVAC instrument adapted for Icelandic conditions (low light, freezing)
- Install 2 NOVAC instruments on Hekla for automatic measurement of total SO2 gas emission
- Develop 2 NOVAC instrument for rapid deployment and prepare sites on 4 additional volcanoes
- Adapt data streams and formats to FUTUREVOLC standards
- Participate in Demostration activities
- Coordinate WP 5.3, Volcanic gas and river water chemistry